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Abstract— Positron Emission Tomography (PET) is an essential imaging tool in oncology used to map metabolic activity in tissues. 

But normal dose PET scans result in high-radiation exposure to patients, particularly relevant for paediatric, geriatric and frequent-

follower patients. Low-dose PET scanning is one of the ways to lower radiation dose and has been one of the most popular methods in 

PET reduction; however, it generates a lot of noise which results in degrading the quality of diagnosis. In this paper, a novel GAN-based 

framework PETGAN has been proposed to improve low-dose PET scans by generating high-quality, denoised images with keeping 

significant diagnostic details. The model is trained on the ACRIN-FDG-PET dataset where paired low-dose and full-dose PET scans are 

available, enabling the generator to learn an accurate mapping from noisy to clean imaging. PETGAN contains a generator based on 

the U-Net and a Patch GAN discriminator which are trained to balance adversarial, perceptual, and reconstruction losses maintaining 

clinical authenticity. The experimental results show that the enhanced images have higher image clarity, with an SSIM of 0.89 and a 

PSNR of 32.8 dB, and can be utilized for accurate tumor detection and staging. PETGAN provides a potential AI-based strategy for 

radiation-free and cost-effective oncologic imaging. 

Index Terms— PETGAN, Medical Image Denoising, Generative Adversarial Networks (GAN), U-Net, PatchGAN, Oncology Imaging 

 

I. INTRODUCTION 

Positron Emission Tomography (PET) is a key diagnostic 

tool for cancer through its ability to non-invasively image 

metabolic activity, but its routine application entails major 

exposure to radiation, which is dangerous for paediatric and 

serially imaged patients especially. The Low-Dose PET (LD-

PET) protocols minimize this exposure but are afflicted with 

poor signal-to-noise ratio (SNR) and severe noise, degrading 

diagnostic performance. [2] Conventional denoising 

techniques like Gaussian filtering and iterative reconstruction 

can blur significant anatomical structures and are not 

applicable across instances. In response, this work presents 

PETGAN, a new deep learning architecture founded upon 

Generative Adversarial Networks (GANs) that employ a U-

Net generator and Patch GAN discriminator.PETGAN is 

learned from the ACRIN-FDG-PET database in which dual 

full- and low-dose scans are available and leverages 

adversarial, perceptual, and reconstruction loss functions to 

produce diagnostically correct, high-fidelity images. 

Experimental outcomes indicate significant image quality 

improvements with an SSIM of 0.89 and PSNR of 32.8 dB, 

thereby enabling clinical applications including tumour 

staging and localisation. [4] The work illustrates PETGAN's 

potential for augmenting LD-PET imaging with enhanced 

safety, diagnostic accuracy, and cost- effectiveness, 

providing a scalable AI-based solution for contemporary 

oncologic imaging pipelines. 

1.1 Background on PET Imaging in Oncology 

Positron Emission Tomography (PET) is a primary 

imaging tool in the field of oncology that offers non-invasive 

assessment of tissue metabolic activity, unlike the structural 

imaging techniques of CT and MRI. Using the ¹⁸F-

fluorodeoxyglucose (¹⁸F-FDG) tracer, PET effectively 

identifies areas of elevated glucose metabolism, enabling 

cancer screening, diagnosis, staging, treatment planning, and 

monitoring of response to therapy.[2] PET and CT fusion 

(PET/CT) and new PET/MRI technologies have also 

enhanced diagnosis by integrating metabolic and anatomical 

data in a fused image. [1] Hybrid systems enable better lesion 

detectability and disease characterization and are particularly 

valuable in cancer management, e.g., lymphoma, lung, breast, 

and brain cancer. Though its clinical use, a natural drawback 

of PET is the natural deployment of ionizing radiation, with 

resultant effects to repeated imaging, especially for long-term 

monitoring and paediatric oncology. 

II. LITERATURE REVIEW 

2.1. Oncologic PET Imaging: Evolution 

Functional imaging in particular, oncologically oriented, 

has seen the advent of positron emission tomography (PET) 

as a major player. Its ability to image on cellular-metabolism 

level is superior to traditional anatomy imaging, such as 

computed tomography (CT) or magnetic resonance imaging 

(MRI). Preliminary studies showed the usefulness of 
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[¹⁸F]FDG-PET in the management of the cancer patient for 

diagnosis, tumor staging and response to therapy [1]. Hybrid 

systems such as PET/CT and PET/MRI, integrating 

metabolic and anatomic information, further improved 

diagnostic accuracy over the years [2]. 

2.2. Low-Dose PET and Its Impact 

In order to preserve patients from radiation particularly in 

the case of pediatric and longitudinal cancer patients Low-

Dose (LD) PET protocols have been introduced by the 

researchers. But this progress was not without its 

compromises. It was reported that reduction of radiotracer 

doses results in increased image noise, worse SNR and 

contrast, resulting in compromise of diagnostic value [3,4]. 

The traditional choices were based on Gaussian smoothing 

and iterative reconstruction (for example, OSEM), however, 

they usually smoothed fine anatomical structures and 

decreased tumor visibility [5]. This motivated the 

development of data-driven noise reduction techniques that 

can restore image quality while preserving the diagnostic 

content in a smart way. 

2.3. Deep Learning based Medical Image Denoising 

The last decade has seen a trend reversal with the advent 

of deep learning in medical imaging, particularly for 

denoising and reconstruction. Due to their ability to capture 

multi-level hierarchical feature representations [6], 

Convolutional Neural Networks (CNNs) have been 

successfully applied to image restoration problems. In PET 

image/MRI image reconstruction CNNs, it is shown that the 

proper denoising of the noisy low-count data will help learn 

the mapping between low-dose and high- dose data and to 

reconstruct what was lost while maintaining the spatial 

structure[7]. Whereas, CNNs are good at optimizing pixel-

wise similarity and may not prioritize perceptual quality or 

clinical interpretability. This bottleneck motivated 

modernizing architectures to the likes of Generative 

Adversarial Networks (GANs).[13] 

2.4. Role of GANs in LD-PET image Enhancement 

GANs, proposed by Goodfellow et al. [8], which are based 

on a generator and a discriminator learned in an adversarial 

manner. They have the potential for photo-realistic output and 

they are also applicable for low dose image enhancement. 

Few research efforts modified GANs for LD-PET denoising. 

For instance, PETGAN [9] and DeepPET [10] demonstrated 

that GAN-based models can recover high-frequency details 

and produce more visually coherent reconstructions than 

CNN-only methods. Such models also employ other 

components like perceptual (VGG-based), adversarial and 

reconstruction loss, which are helpful to maintain structural 

and semantic consistency. While GANs are successful, they 

are plagued by issues such as training instability, mode 

collapse, and the insertion of artifacts, all of which have the 

potential to hallucinate non-existing tumors or hide subtle 

pathologies [11]. 

2.5. Gaps in Existing Research 

Although some preliminary work is encouraging, clinical 

realization of GAN-based PET denoising remains 

challenging: 

• The majority of models maximize visual similarity while 

not guaranteeing clinical fidelity. 

• The lack of values may be generalized to the fact that the 

tumor biology and scanner noise distribution are 

heterogeneous. 

• Perhaps due to the use of more complex on-not links, 

many models have little explainability, posing moral 

hazards in clinical practice. 

• This work fills these gaps by presenting a new GAN 

architecture (PETGAN) that is trained and evaluated on 

paired[FN1] LD-FD PET images both quantitatively (e.g., 

PSNR, SSIM) and qualitatively in an oncologic setting.[7] 

III. METHODOLOGY 

3.1. Overview of the PETGAN Framework 

The resulting PETGAN framework is intended to improve 

the quality of LD-PET images by learning a mapping between 

noisy, low-count PET scans and their respective full-dose 

counterparts. PETGAN uses a Generative Adversarial 

Network (GAN) architecture comprised of a U-Net-based 

generator and a PatchGAN-based discriminator, trained 

adversarially. The network is trained with paired LD-FD 

(low-dose and full-dose) PET images available in the 

ACRIN-FDG-PET dataset. The objective is to restore 

clinically useful PET images with less noise while retaining 

delicate anatomical and metabolic details critical for 

oncologic interpretation. Training maximizes an aggregate 

loss function which incorporates adversarial loss, perceptual 

loss, and pixel-wise reconstruction loss to allow PETGAN to 

learn both low-level structural and high-level semantic 

fidelity. The overall PETGAN architecture permits efficient 

noise reduction with preservation of the tumor boundary 

sharpness, texture patterns, and gradient information, which 

are usually lost in conventional denoising techniques. The 

framework incorporates the following key components: 

• End-to-End Training Pipeline 

• Dual-Domain Learning 

• Paired Supervised Learning: 

• Clinical Robustness and Generalization 

• Evaluation Strategy 

3.2. Architecture of the Generator (U-Net) 

The generator in PETGAN model takes the U-Net 

structure, an especially trendy deep convolutional neural 

network that is highly appropriate for biomedical image-to-

image translation. Its encoder–decoder architecture with skip 

connections supports efficient spatial information 

preservation alongside high-level representation learning—
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vital for medical image denoising where global structure and 

local tumor details both need to be preserved. The encoder is 

built using convolutional blocks with two 3×3 convolutions, 

ReLU activation, and batch normalization, and then 2×2 max 

pooling for downsampling.[7] Feature channels are doubled 

in each level to handle hierarchical information. The decoder 

conducts upsampling with 2×2 transposed convolutions and 

combines corresponding encoder features through skip 

connections, and then two 3×3 convolutions, ReLU, and 

batch normalization. Skip connections recover the lost fine 

details during encoding. The output layer applies a 1×1 

convolution with Tanh activation to generate denoised image 

normalized to the range [−1, 1], resolution-wise the same as 

input but with much less noise. This design maintains 

anatomical detail, preserves strong noise suppression, 

extracts multi-scale features, and is computationally 

efficient—enabling PETGAN to generate diagnostically 

sound low-dose PET images.[6] 

3.3. Architecture of the Discriminator (PatchGAN) 

The discriminator in the PETGAN model uses the 

PatchGAN architecture, which is used to evaluate the realism 

of neighborhood image patches and not the whole image. It 

works best in medical imaging where high-frequency 

anatomical details are essential in determining the accuracy 

in diagnosis. Unlike regular discriminators that produce one 

binary label for each image, PatchGAN judges overlapping 

N×N patches independently as real or fake, promoting local 

realism and guiding the generator to produce texture-rich, 

perceptually consistent outputsThe network takes as input the 

concatenation of the denoised PET image with its full-dose 

ground truth and goes through five convolutional layers, 

which are followed by LeakyReLU activations (slope = 0.2) 

and instance normalization, excluding the first layer.[6] 

Strided convolutions are employed for downsampling, and 

output is a 2D probability map in which the value at each 

position denotes the authenticity of the corresponding patch 

(e.g., a 256×256 image gives an output of size 30×30 with 

70×70 patches). The adversarial loss is given by:[10] 

L adv (G,D) =E x,y[log D (x,y)] + Ex [ log (1 – D (x, G(x)))] 

This loss mandates the creation of high-fidelity patches 

undistinguishable from authentic PET images. PatchGAN 

enhances local texture restoration, diminishes blurring, and 

facilitates quicker and more stable training. Clinically, this 

localized discrimination ensures preservation of critical 

oncologic details like tumor heterogeneity, lesion contours, 

and fine metabolic gradients so that the denoised PET images 

are not only visually realistic but also diagnostically 

sound.[7] 

3.4. Proposed Novel Architecture 

In this study, we introduce a new GAN-based framework 

that is tailored for LD-PET image denoising with the name 

PETGAN. [2] Multi-scale spatial information is captured by 

the U-net-based generator and high perceptual reality is 

enforced via Patch-GAN discriminator. We extend the 

architecture with a composite loss to jointly improve both 

structure fidelity and diagnostic value. 

3.4.1. Loss Functions Used 

Adversarial Loss 

Encourages the generator to generate images similar 

enough that the discriminator cannot tell whether or not an 

image is from a full-dose PET scan. 

Perceptual Loss 

It makes use of the feature maps obtained from a pre-

trained VGG network to preserve the high-level semantic 

features and improve visual quality.  

Reconstruction Loss 

It computes pixel-wise L1 loss between the denoised 

images and the ground truth full-dose images to assure that 

the structure is to be preserved. 

3.5. Training Strategy 

Supervised by paired low dose and full-dose PET images, 

PETGAN is trained using supervised learning. The loss 

composition is used to optimize the two losses while the 

generator and discriminator are trained alternately. It uses 

techniques such as batch normalization, learning rate 

scheduling, and early stopping for more stability training. 

3.6. Dataset Description (ACRIN-FDG-PET) 

We apply our algorithm to the ACRIN-FDG-PET 

database, one of the publicly available PET datasets 

consisting of pairs of low-dose and full-dose PET scans. This 

dataset has more number of tumor types and anatomical 

structures providing broad representation for training and 

testing of the model.[12] 

3.7. Data Preprocessing and Augmentation (Parameter 

Tuning) 

The input images are normalized and resized for simplicity. 

Data augmentation: A common strategy to avoid overfitting 

and increase model generalization by adding random 

cropping, flipping, and intensity scaling. Grid search 

parameters: patch size, learning rate and batch size are tuned 

to get the best denoising performance. 

IV. EXPERIMENTAL SETUP 

In this part, the environment and training preparation 

describe the metrics for evaluation in tables, and also include 

the base models of comparison with PETGAN. 

4.1. Implementation Environment 

The PETGAN model was developed using the Python 3.9 

programming language and the PyTorch deep learning 

framework. The model was trained and evaluated on a GPU 

(NVIDIA RTX 3090, 24GB VRAM) with Ubuntu 20.04 
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LTS. The experiments were conducted in a virtual 

environment equipped with the PyTorch, NumPy, OpenCV, 

and scikit-image libraries[13]. 

4.2. Training Parameters and Hyperparameters 

The Adam optimizer was used to train the PETGAN with 

an initial learning rate of 0.0002 and β1 = 0.5, β2 = 0.999, 

The model used a patch size of 128×128 was trained for 200 

epochs with a batchsize of 8. We further empirically applied 

a learning rate decay after 100 epochs for robust convergence. 

The composite loss function included:[8] 

• Adversarial Loss (λ_adv = 1.0) 

• Perceptual Loss (λ_perc = 0.1) 

• Reconstruction Loss (λ_recon = 10) 

To enhance the robustness of the models, various data 

augmentation strategies (includingbut not limited torandom 

flip, crop and intensity scaling) were employed. 

TABLE 1: Training parameters and hyperparameters 

Hyperparameter Value Description 

Epochs 200 Number of Full Passes 

through the training dataset. 

Batch Size 8 Number of samples per 

training batch. 

Learning Rate 0.0002 Initial learning rate of both 

generator and discriminator. 

Patch Size 128 x 128 Input patch size fed into 

model. 

Augmentation 

Methods 

Flip, crop, 

intensity 

scaling 

Used to increase data 

diversity and prevent 

overfiting. 

4.3. Evaluation Metrics 

The denoising performance of PETGAN is reviewed based 

on the following criteria 

TABLE 2: Evaluation Metrics 

Metric Description 

SSIM (Structural 

Similarity Index) 

Perceptual similarity to the 

denoised image — ground truth 

image. Ranges from -1 to 1. 

PSNR (Peak Signal-to-

Noise Ratio) 

It measures the pixel-wise error 

which evaluates the reconstruction 

quality. Higher is better. 

MSE (Mean Squared 

Error) 

Mean Squared Difference between 

the Output and Target image. 

Lower is better. 

CNR (Contrast-to-

Noise Ratio) 

Evaluates the lesion-to-background 

contrast in PET images 

4.4. Baseline Methods for Comparison 

Description of Baselines: We consider the following 

baseline models for comparison with PETGAN.[7] 

• Gaussian Smoothing Defined: The classical denoising 

using fixed kernel filtering; 

• OSEM (Ordered Subsets Expectation Maximization): 

Iterative computing method widely used in PET. 

• U-Net denoising baseline: A simple U-net architecture, 

trained just on pixel-wise L1 loss. 

• DeepPET: GAN-based denoising model adopted from the 

literature and trained on LD-PET data. 

To fairly compare the two methods, we evaluated them 

with an identical dataset and metrics. 

V. RESULTS AND DISCUSSION 

This article demonstrates quantitative and qualitative 

results, ablation study to examine the performance of the 

model and discussion on clinical importance for which 

discovery in tumor detection and limitation of PETGAN. 

5.1. Quantitative Evaluation 

Regarding common metrics, PETGAN outperformed its 

competitors in low-dose PET image denoising. It 

outperformed the traditional and deep learning baselines by: 

• SSIM: 0.89 (CNN: 0.81, OSEM: 0.77) 

• Comparison on Gaussian noise added image=> PSNR: 

32.8 dB (vs. 28.5 dB for CNN, 26.9 dB for GPU-based 

Gaussian) 

• MSE: Better than all baseline methods 

Higher values are better for quality count of structural 

preservation and noise suppression allowing to retain 

diagnostically crucial details.[5] 

5.2. Qualitative Results 

Therefore, qualitatively visual comparison demonstrates 

that the PETGAN method can well remove the noise and 

meanwhile preserve the fine anatomical details and even 

tumor boundaries. Sample results include: 

 
Fig 1: Heatmap 

 
Fig 2: Epochs 
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Fig 3: Confusion Ma 

5.3. Discussion Tumor Detection & Clinical Relevance 

The ability of PETGAN to respect both the tumor outline 

and its metabolic heterogeneity and gradients is paramount 

for:[12] 

• Accurate tumor localization 

• Grading and staging 

• Treatment planning and monitoring 

Clinical trust needs visual realism without hallucination 

and improved certainty to avoid any risks of misdiagnosis, 

particularly in pediatric and follow-up imaging. 

5.4. Limitations and Challenges 

While the model exhibits encouraging results, it is not 

without limitations: 

• Generalizability: Performance will likely drop for unseen 

scanner types or different radiotracer protocols. 

• Artifacts: GANs have such high capacity that they can 

introduce synthetic artifacts into the result if not trained 

very carefully. 

• Interpretability: The interpretability of deep models is still 

a concern today and the improved trust needed in clinical 

environments as per the Hippocratic Oath. 

• Paired LD-FD datasets are scarce, constraining validation 

across a large population. 

VI. CONCLUSION AND FUTURE WORK 

6.1 Impact on Radiation-Free Imaging 

PETGAN offers an exciting deep learning architecture for 

improving low-dose PET scans by efficiently suppressing 

noise while maintaining 

essential diagnostic information. Its architecture using 

GAN with U-Net and PatchGAN facilitates the production of 

high-quality images with enhanced SSIM and PSNR values. 

This innovation enables safer, radiation-minimal imaging—

particularly useful for pediatric, elderly, and follow-up 

oncological patients—opening the door to AI-aided low- dose 

imaging in real-world practice.[13] 

6.2 Future Enhancements 

Subsequent studies can further develop PETGAN with 

multi-modal data fusion (e.g., PET/CT, PET/MRI) for 

diagnostic robustness and strengthening. The integration of 

attention mechanisms and model optimization for real-time 

use will enhance clinical feasibility. In addition, validation of 

PETGAN via radiologist scoring and expansion of its training 

via federated learning may offer greater generalizability and 

ethical deployment across diverse clinical settings. 
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