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Abstract— Positron Emission Tomography (PET) is an essential imaging tool in oncology used to map metabolic activity in tissues.
But normal dose PET scans result in high-radiation exposure to patients, particularly relevant for paediatric, geriatric and frequent-
follower patients. Low-dose PET scanning is one of the ways to lower radiation dose and has been one of the most popular methods in
PET reduction; however, it generates a lot of noise which results in degrading the quality of diagnosis. In this paper, a novel GAN-based
framework PETGAN has been proposed to improve low-dose PET scans by generating high-quality, denoised images with keeping
significant diagnostic details. The model is trained on the ACRIN-FDG-PET dataset where paired low-dose and full-dose PET scans are
available, enabling the generator to learn an accurate mapping from noisy to clean imaging. PETGAN contains a generator based on
the U-Net and a Patch GAN discriminator which are trained to balance adversarial, perceptual, and reconstruction losses maintaining
clinical authenticity. The experimental results show that the enhanced images have higher image clarity, with an SSIM of 0.89 and a
PSNR of 32.8 dB, and can be utilized for accurate tumor detection and staging. PETGAN provides a potential Al-based strategy for
radiation-free and cost-effective oncologic imaging.

Index Terms— PETGAN, Medical Image Denoising, Generative Adversarial Networks (GAN), U-Net, PatchGAN, Oncology Imaging

1.1 Background on PET Imaging in Oncology

Positron Emission Tomography (PET) is a primary
imaging tool in the field of oncology that offers non-invasive
assessment of tissue metabolic activity, unlike the structural
imaging techniques of CT and MRI. Using the "“F-
fluorodeoxyglucose (**F-FDG) tracer, PET effectively
identifies areas of elevated glucose metabolism, enabling
cancer screening, diagnosis, staging, treatment planning, and
monitoring of response to therapy.[2] PET and CT fusion
(PET/CT) and new PET/MRI technologies have also
enhanced diagnosis by integrating metabolic and anatomical
data in a fused image. [1] Hybrid systems enable better lesion
detectability and disease characterization and are particularly
valuable in cancer management, e.g., lymphoma, lung, breast,
and brain cancer. Though its clinical use, a natural drawback
of PET is the natural deployment of ionizing radiation, with
resultant effects to repeated imaging, especially for long-term
monitoring and paediatric oncology.

I. INTRODUCTION

Positron Emission Tomography (PET) is a key diagnostic
tool for cancer through its ability to non-invasively image
metabolic activity, but its routine application entails major
exposure to radiation, which is dangerous for paediatric and
serially imaged patients especially. The Low-Dose PET (LD-
PET) protocols minimize this exposure but are afflicted with
poor signal-to-noise ratio (SNR) and severe noise, degrading
diagnostic performance. [2] Conventional denoising
techniques like Gaussian filtering and iterative reconstruction
can blur significant anatomical structures and are not
applicable across instances. In response, this work presents
PETGAN, a new deep learning architecture founded upon
Generative Adversarial Networks (GANSs) that employ a U-
Net generator and Patch GAN discriminator.PETGAN is
learned from the ACRIN-FDG-PET database in which dual
full- and low-dose scans are available and leverages
adversarial, perceptual, and reconstruction loss functions to
produc_:e diagnostically _ cprrect, . h_|gh-f|de_llty images. Il LITERATURE REVIEW
Experimental outcomes indicate significant image quality
improvements with an SSIM of 0.89 and PSNR of 32.8 dB, 2.1. Oncologic PET Imaging: Evolution

thereby enabling clinical applications including tumour Functional imaging in particular, oncologically oriented,
Staging and localisation. [4] The work illustrates PETGAN's has seen the advent of positron emission tomography (PET)
potential for augmenting LD-PET imaging with enhanced  as a major player. Its ability to image on cellular-metabolism
safety, diagnostic accuracy, and cost- effectiveness, |evel is superior to traditional anatomy imaging, such as
providing a scalable Al-based solution for contemporary  computed tomography (CT) or magnetic resonance imaging
oncologic imaging pipelines. (MRI). Preliminary studies showed the usefulness of
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['*FJFDG-PET in the management of the cancer patient for
diagnosis, tumor staging and response to therapy [1]. Hybrid
systems such as PET/CT and PET/MRI, integrating
metabolic and anatomic information, further improved
diagnostic accuracy over the years [2].

2.2. Low-Dose PET and Its Impact

In order to preserve patients from radiation particularly in
the case of pediatric and longitudinal cancer patients Low-
Dose (LD) PET protocols have been introduced by the
researchers. But this progress was not without its
compromises. It was reported that reduction of radiotracer
doses results in increased image noise, worse SNR and
contrast, resulting in compromise of diagnostic value [3,4].
The traditional choices were based on Gaussian smoothing
and iterative reconstruction (for example, OSEM), however,
they usually smoothed fine anatomical structures and
decreased tumor visibility [5]. This motivated the
development of data-driven noise reduction techniques that
can restore image quality while preserving the diagnostic
content in a smart way.

2.3. Deep Learning based Medical Image Denoising

The last decade has seen a trend reversal with the advent
of deep learning in medical imaging, particularly for
denoising and reconstruction. Due to their ability to capture
multi-level  hierarchical feature representations [6],
Convolutional Neural Networks (CNNs) have been
successfully applied to image restoration problems. In PET
image/MRI image reconstruction CNNSs, it is shown that the
proper denoising of the noisy low-count data will help learn
the mapping between low-dose and high- dose data and to
reconstruct what was lost while maintaining the spatial
structure[7]. Whereas, CNNs are good at optimizing pixel-
wise similarity and may not prioritize perceptual quality or
clinical interpretability. This bottleneck motivated
modernizing architectures to the likes of Generative
Adversarial Networks (GANSs).[13]

2.4. Role of GANs in LD-PET image Enhancement

GAN:Ss, proposed by Goodfellow et al. [8], which are based
on a generator and a discriminator learned in an adversarial
manner. They have the potential for photo-realistic output and
they are also applicable for low dose image enhancement.
Few research efforts modified GANs for LD-PET denoising.
For instance, PETGAN [9] and DeepPET [10] demonstrated
that GAN-based models can recover high-frequency details
and produce more visually coherent reconstructions than
CNN-only methods. Such models also employ other
components like perceptual (VGG-based), adversarial and
reconstruction loss, which are helpful to maintain structural
and semantic consistency. While GANs are successful, they
are plagued by issues such as training instability, mode
collapse, and the insertion of artifacts, all of which have the
potential to hallucinate non-existing tumors or hide subtle

pathologies [11].
2.5. Gaps in Existing Research

Although some preliminary work is encouraging, clinical
realization of GAN-based PET denoising remains
challenging:

The majority of models maximize visual similarity while
not guaranteeing clinical fidelity.

The lack of values may be generalized to the fact that the
tumor biology and scanner noise distribution are
heterogeneous.

Perhaps due to the use of more complex on-not links,
many models have little explainability, posing moral
hazards in clinical practice.

This work fills these gaps by presenting a new GAN
architecture (PETGAN) that is trained and evaluated on
paired[FN1] LD-FD PET images both quantitatively (e.g.,
PSNR, SSIM) and qualitatively in an oncologic setting.[7]

I11. METHODOLOGY

3.1. Overview of the PETGAN Framework

The resulting PETGAN framework is intended to improve
the quality of LD-PET images by learning a mapping between
noisy, low-count PET scans and their respective full-dose
counterparts. PETGAN uses a Generative Adversarial
Network (GAN) architecture comprised of a U-Net-based
generator and a PatchGAN-based discriminator, trained
adversarially. The network is trained with paired LD-FD
(low-dose and full-dose) PET images available in the
ACRIN-FDG-PET dataset. The objective is to restore
clinically useful PET images with less noise while retaining
delicate anatomical and metabolic details critical for
oncologic interpretation. Training maximizes an aggregate
loss function which incorporates adversarial loss, perceptual
loss, and pixel-wise reconstruction loss to allow PETGAN to
learn both low-level structural and high-level semantic
fidelity. The overall PETGAN architecture permits efficient
noise reduction with preservation of the tumor boundary
sharpness, texture patterns, and gradient information, which
are usually lost in conventional denoising techniques. The
framework incorporates the following key components:
End-to-End Training Pipeline
Dual-Domain Learning
Paired Supervised Learning:

Clinical Robustness and Generalization
Evaluation Strategy

3.2. Architecture of the Generator (U-Net)

The generator in PETGAN model takes the U-Net
structure, an especially trendy deep convolutional neural
network that is highly appropriate for biomedical image-to-
image translation. Its encoder—decoder architecture with skip
connections  supports  efficient  spatial  information
preservation alongside high-level representation learning—
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vital for medical image denoising where global structure and
local tumor details both need to be preserved. The encoder is
built using convolutional blocks with two 3x3 convolutions,
ReLU activation, and batch normalization, and then 2x2 max
pooling for downsampling.[7] Feature channels are doubled
in each level to handle hierarchical information. The decoder
conducts upsampling with 2x2 transposed convolutions and
combines corresponding encoder features through skip
connections, and then two 3x3 convolutions, ReLU, and
batch normalization. Skip connections recover the lost fine
details during encoding. The output layer applies a 1x1
convolution with Tanh activation to generate denoised image
normalized to the range [—1, 1], resolution-wise the same as
input but with much less noise. This design maintains
anatomical detail, preserves strong noise suppression,
extracts multi-scale features, and is computationally
efficient—enabling PETGAN to generate diagnostically
sound low-dose PET images.[6]

3.3. Architecture of the Discriminator (PatchGAN)

The discriminator in the PETGAN model uses the
PatchGAN architecture, which is used to evaluate the realism
of neighborhood image patches and not the whole image. It
works best in medical imaging where high-frequency
anatomical details are essential in determining the accuracy
in diagnosis. Unlike regular discriminators that produce one
binary label for each image, PatchGAN judges overlapping
NxN patches independently as real or fake, promoting local
realism and guiding the generator to produce texture-rich,
perceptually consistent outputsThe network takes as input the
concatenation of the denoised PET image with its full-dose
ground truth and goes through five convolutional layers,
which are followed by LeakyReL U activations (slope = 0.2)
and instance normalization, excluding the first layer.[6]
Strided convolutions are employed for downsampling, and
output is a 2D probability map in which the value at each
position denotes the authenticity of the corresponding patch
(e.g., a 256x256 image gives an output of size 30x30 with
70x70 patches). The adversarial loss is given by:[10]

L aav (G,D) =E xy[log D (x,y)] + Ex [ log (1 - D (x, G(x)))]

This loss mandates the creation of high-fidelity patches
undistinguishable from authentic PET images. PatchGAN
enhances local texture restoration, diminishes blurring, and
facilitates quicker and more stable training. Clinically, this
localized discrimination ensures preservation of critical
oncologic details like tumor heterogeneity, lesion contours,
and fine metabolic gradients so that the denoised PET images
are not only visually realistic but also diagnostically
sound.[7]

3.4. Proposed Novel Architecture

In this study, we introduce a new GAN-based framework
that is tailored for LD-PET image denoising with the name
PETGAN. [2] Multi-scale spatial information is captured by

the U-net-based generator and high perceptual reality is
enforced via Patch-GAN discriminator. We extend the
architecture with a composite loss to jointly improve both
structure fidelity and diagnostic value.

3.4.1. Loss Functions Used

Adversarial Loss

Encourages the generator to generate images similar
enough that the discriminator cannot tell whether or not an
image is from a full-dose PET scan.

Perceptual Loss

It makes use of the feature maps obtained from a pre-
trained VGG network to preserve the high-level semantic
features and improve visual quality.

Reconstruction Loss

It computes pixel-wise L1 loss between the denoised
images and the ground truth full-dose images to assure that
the structure is to be preserved.

3.5. Training Strategy

Supervised by paired low dose and full-dose PET images,
PETGAN s trained using supervised learning. The loss
composition is used to optimize the two losses while the
generator and discriminator are trained alternately. It uses
techniques such as batch normalization, learning rate
scheduling, and early stopping for more stability training.

3.6. Dataset Description (ACRIN-FDG-PET)

We apply our algorithm to the ACRIN-FDG-PET
database, one of the publicly available PET datasets
consisting of pairs of low-dose and full-dose PET scans. This
dataset has more number of tumor types and anatomical
structures providing broad representation for training and
testing of the model.[12]

3.7. Data Preprocessing and Augmentation (Parameter
Tuning)

The input images are normalized and resized for simplicity.
Data augmentation: A common strategy to avoid overfitting
and increase model generalization by adding random
cropping, flipping, and intensity scaling. Grid search
parameters: patch size, learning rate and batch size are tuned
to get the best denoising performance.

IV. EXPERIMENTAL SETUP

In this part, the environment and training preparation
describe the metrics for evaluation in tables, and also include
the base models of comparison with PETGAN.

4.1. Implementation Environment

The PETGAN model was developed using the Python 3.9
programming language and the PyTorch deep learning
framework. The model was trained and evaluated on a GPU
(NVIDIA RTX 3090, 24GB VRAM) with Ubuntu 20.04
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LTS. The experiments were conducted in a virtual
environment equipped with the PyTorch, NumPy, OpenCV,
and scikit-image libraries[13].

4.2. Training Parameters and Hyperparameters

The Adam optimizer was used to train the PETGAN with
an initial learning rate of 0.0002 and Bl = 0.5, f2 = 0.999,
The model used a patch size of 128x128 was trained for 200
epochs with a batchsize of 8. We further empirically applied
a learning rate decay after 100 epochs for robust convergence.
The composite loss function included:[8]

Adversarial Loss (A_adv =1.0)
Perceptual Loss (A_perc =0.1)
Reconstruction Loss (A_recon = 10)
To enhance the robustness of the models, various data

augmentation strategies (includingbut not limited torandom
flip, crop and intensity scaling) were employed.

TABLE 1: Training parameters and hyperparameters

Hyperparameter| Value Description

Epochs 200 Number of Full Passes
through the training dataset.

Batch Size 8 Number of samples per
training batch.

Learning Rate 0.0002 |Initial learning rate of both
generator and discriminator.

Patch Size 128 x 128 |Input patch size fed into
model.

Augmentation Flip, crop, |Used to increase data

Methods intensity (diversity and prevent

scaling [overfiting.

4.3. Evaluation Metrics

The denoising performance of PETGAN is reviewed based
on the following criteria

TABLE 2: Evaluation Metrics

Metric Description
SSIM (Structural Perceptual similarity to the
Similarity Index) denoised image — ground truth
image. Ranges from -1to 1.
It measures the pixel-wise error
which evaluates the reconstruction
quality. Higher is better.
Mean Squared Difference between
the Output and Target image.
Lower is better.
Evaluates the lesion-to-background
contrast in PET images

PSNR (Peak Signal-to-
Noise Ratio)

MSE (Mean Squared
Error)

CNR (Contrast-to-
Noise Ratio)

4.4. Baseline Methods for Comparison
Description of Baselines: We consider the following
baseline models for comparison with PETGAN.[7]

Gaussian Smoothing Defined: The classical denoising
using fixed kernel filtering;

OSEM (Ordered Subsets Expectation Maximization):
Iterative computing method widely used in PET.
U-Net denoising baseline: A simple U-net architecture,
trained just on pixel-wise L1 loss.
DeepPET: GAN-based denoising model adopted from the
literature and trained on LD-PET data.
To fairly compare the two methods, we evaluated them
with an identical dataset and metrics.

V. RESULTS AND DISCUSSION

This article demonstrates quantitative and qualitative
results, ablation study to examine the performance of the
model and discussion on clinical importance for which
discovery in tumor detection and limitation of PETGAN.

5.1. Quantitative Evaluation

Regarding common metrics, PETGAN outperformed its
competitors in low-dose PET image denoising. It
outperformed the traditional and deep learning baselines by:
SSIM: 0.89 (CNN: 0.81, OSEM: 0.77)

Comparison on Gaussian noise added image=> PSNR:
32.8 dB (vs. 28.5 dB for CNN, 26.9 dB for GPU-based
Gaussian)

MSE: Better than all baseline methods

Higher values are better for quality count of structural
preservation and noise suppression allowing to retain
diagnostically crucial details.[5]

5.2. Qualitative Results

Therefore, qualitatively visual comparison demonstrates
that the PETGAN method can well remove the noise and
meanwhile preserve the fine anatomical details and even
tumor boundaries. Sample results include:

Fig 1: Heatmap

PSNR & SSIM over Epochs

uuuuu

Fig 2: Epochs
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Fig 3: Confusion Ma
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5.3. Discussion Tumor Detection & Clinical Relevance

The ability of PETGAN to respect both the tumor outline
and its metabolic heterogeneity and gradients is paramount
for:[12]

Accurate tumor localization

Grading and staging

Treatment planning and monitoring
Clinical trust needs visual realism without hallucination
and improved certainty to avoid any risks of misdiagnosis,
particularly in pediatric and follow-up imaging.

5.4. Limitations and Challenges

While the model exhibits encouraging results, it is not
without limitations:
Generalizability: Performance will likely drop for unseen
scanner types or different radiotracer protocols.
Artifacts: GANs have such high capacity that they can
introduce synthetic artifacts into the result if not trained
very carefully.
Interpretability: The interpretability of deep models is still
a concern today and the improved trust needed in clinical
environments as per the Hippocratic Oath.
Paired LD-FD datasets are scarce, constraining validation
across a large population.

VI. CONCLUSION AND FUTURE WORK

6.1 Impact on Radiation-Free Imaging

PETGAN offers an exciting deep learning architecture for
improving low-dose PET scans by efficiently suppressing
noise while maintaining

essential diagnostic information. Its architecture using
GAN with U-Net and PatchGAN facilitates the production of
high-quality images with enhanced SSIM and PSNR values.
This innovation enables safer, radiation-minimal imaging—
particularly useful for pediatric, elderly, and follow-up
oncological patients—opening the door to Al-aided low- dose
imaging in real-world practice.[13]

6.2 Future Enhancements

Subsequent studies can further develop PETGAN with
multi-modal data fusion (e.g., PET/CT, PET/MRI) for

diagnostic robustness and strengthening. The integration of
attention mechanisms and model optimization for real-time
use will enhance clinical feasibility. In addition, validation of
PETGAN via radiologist scoring and expansion of its training
via federated learning may offer greater generalizability and
ethical deployment across diverse clinical settings.
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